📌 TOPINDIATOURS Breaking ai: MIT Researchers Unveil “SEAL”: A New Step Towards Sel
The concept of AI self-improvement has been a hot topic in recent research circles, with a flurry of papers emerging and prominent figures like OpenAI CEO Sam Altman weighing in on the future of self-evolving intelligent systems. Now, a new paper from MIT, titled “Self-Adapting Language Models,” introduces SEAL (Self-Adapting LLMs), a novel framework that allows large language models (LLMs) to update their own weights. This development is seen as another significant step towards the realization of truly self-evolving AI.
The research paper, published yesterday, has already ignited considerable discussion, including on Hacker News. SEAL proposes a method where an LLM can generate its own training data through “self-editing” and subsequently update its weights based on new inputs. Crucially, this self-editing process is learned via reinforcement learning, with the reward mechanism tied to the updated model’s downstream performance.
The timing of this paper is particularly notable given the recent surge in interest surrounding AI self-evolution. Earlier this month, several other research efforts garnered attention, including Sakana AI and the University of British Columbia’s “Darwin-Gödel Machine (DGM),” CMU’s “Self-Rewarding Training (SRT),” Shanghai Jiao Tong University’s “MM-UPT” framework for continuous self-improvement in multimodal large models, and the “UI-Genie” self-improvement framework from The Chinese University of Hong Kong in collaboration with vivo.
Adding to the buzz, OpenAI CEO Sam Altman recently shared his vision of a future with self-improving AI and robots in his blog post, “The Gentle Singularity.” He posited that while the initial millions of humanoid robots would need traditional manufacturing, they would then be able to “operate the entire supply chain to build more robots, which can in turn build more chip fabrication facilities, data centers, and so on.” This was quickly followed by a tweet from @VraserX, claiming an OpenAI insider revealed the company was already running recursively self-improving AI internally, a claim that sparked widespread debate about its veracity.
Regardless of the specifics of internal OpenAI developments, the MIT paper on SEAL provides concrete evidence of AI’s progression towards self-evolution.
Understanding SEAL: Self-Adapting Language Models
The core idea behind SEAL is to enable language models to improve themselves when encountering new data by generating their own synthetic data and optimizing their parameters through self-editing. The model’s training objective is to directly generate these self-edits (SEs) using data provided within the model’s context.
The generation of these self-edits is learned through reinforcement learning. The model is rewarded when the generated self-edits, once applied, lead to improved performance on the target task. Therefore, SEAL can be conceptualized as an algorithm with two nested loops: an outer reinforcement learning (RL) loop that optimizes the generation of self-edits, and an inner update loop that uses the generated self-edits to update the model via gradient descent.
This method can be viewed as an instance of meta-learning, where the focus is on how to generate effective self-edits in a meta-learning fashion.
A General Framework
SEAL operates on a single task instance (C,τ), where C is context information relevant to the task, and τ defines the downstream evaluation for assessing the model’s adaptation. For example, in a knowledge integration task, C might be a passage to be integrated into the model’s internal knowledge, and τ a set of questions about that passage.
Given C, the model generates a self-edit SE, which then updates its parameters through supervised fine-tuning: θ′←SFT(θ,SE). Reinforcement learning is used to optimize this self-edit generation: the model performs an action (generates SE), receives a reward r based on LMθ′’s performance on τ, and updates its policy to maximize the expected reward.
The researchers found that traditional online policy methods like GRPO and PPO led to unstable training. They ultimately opted for ReST^EM, a simpler, filtering-based behavioral cloning approach from a DeepMind paper. This method can be viewed as an Expectation-Maximization (EM) process, where the E-step samples candidate outputs from the current model policy, and the M-step reinforces only those samples that yield a positive reward through supervised fine-tuning.
The paper also notes that while the current implementation uses a single model to generate and learn from self-edits, these roles could be separated in a “teacher-student” setup.
Instantiating SEAL in Specific Domains
The MIT team instantiated SEAL in two specific domains: knowledge integration and few-shot learning.
- Knowledge Integration: The goal here is to effectively integrate information from articles into the model’s weights.
- Few-Shot Learning: This involves the model adapting to new tasks with very few examples.
Experimental Results
The experimental results for both few-shot learning and knowledge integration demonstrate the effectiveness of the SEAL framework.
In few-shot learning, using a Llama-3.2-1B-Instruct model, SEAL significantly improved adaptation success rates, achieving 72.5% compared to 20% for models using basic self-edits without RL training, and 0% without adaptation. While still below “Oracle TTT” (an idealized baseline), this indicates substantial progress.
For knowledge integration, using a larger Qwen2.5-7B model to integrate new facts from SQuAD articles, SEAL consistently outperformed baseline methods. Training with synthetically generated data from the base Qwen-2.5-7B model already showed notable improvements, and subsequent reinforcement learning further boosted performance. The accuracy also showed rapid improvement over external RL iterations, often surpassing setups using GPT-4.1 generated data within just two iterations.
Qualitative examples from the paper illustrate how reinforcement learning leads to the generation of more detailed self-edits, resulting in improved performance.
While promising, the researchers also acknowledge some limitations of the SEAL framework, including aspects related to catastrophic forgetting, computational overhead, and context-dependent evaluation. These are discussed in detail in the original paper.
Original Paper: https://arxiv.org/pdf/2506.10943
Project Site: https://jyopari.github.io/posts/seal
Github Repo: https://github.com/Continual-Intelligence/SEAL
The post MIT Researchers Unveil “SEAL”: A New Step Towards Self-Improving AI first appeared on Synced.
🔗 Sumber: syncedreview.com
📌 TOPINDIATOURS Update ai: Nous Research's NousCoder-14B is an open-source co
Nous Research, the open-source artificial intelligence startup backed by crypto venture firm Paradigm, released a new competitive programming model on Monday that it says matches or exceeds several larger proprietary systems — trained in just four days using 48 of Nvidia's latest B200 graphics processors.
The model, called NousCoder-14B, is another entry in a crowded field of AI coding assistants, but arrives at a particularly charged moment: Claude Code, the agentic programming tool from rival Anthropic, has dominated social media discussion since New Year's Day, with developers posting breathless testimonials about its capabilities. The simultaneous developments underscore how quickly AI-assisted software development is evolving — and how fiercely companies large and small are competing to capture what many believe will become a foundational technology for how software gets written.
type: embedded-entry-inline id: 74cSyrq6OUrp9SEQ5zOUSl
NousCoder-14B achieves a 67.87 percent accuracy rate on LiveCodeBench v6, a standardized evaluation that tests models on competitive programming problems published between August 2024 and May 2025. That figure represents a 7.08 percentage point improvement over the base model it was trained from, Alibaba's Qwen3-14B, according to Nous Research's technical report published alongside the release.
"I gave Claude Code a description of the problem, it generated what we built last year in an hour," wrote Jaana Dogan, a principal engineer at Google responsible for the Gemini API, in a viral post on X last week that captured the prevailing mood around AI coding tools. Dogan was describing a distributed agent orchestration system her team had spent a year developing — a system Claude Code approximated from a three-paragraph prompt.
The juxtaposition is instructive: while Anthropic's Claude Code has captured imaginations with demonstrations of end-to-end software development, Nous Research is betting that open-source alternatives trained on verifiable problems can close the gap — and that transparency in how these models are built matters as much as raw capability.
How Nous Research built an AI coding model that anyone can replicate
What distinguishes the NousCoder-14B release from many competitor announcements is its radical openness. Nous Research published not just the model weights but the complete reinforcement learning environment, benchmark suite, and training harness — built on the company's Atropos framework — enabling any researcher with sufficient compute to reproduce or extend the work.
"Open-sourcing the Atropos stack provides the necessary infrastructure for reproducible olympiad-level reasoning research," noted one observer on X, summarizing the significance for the academic and open-source communities.
The model was trained by Joe Li, a researcher in residence at Nous Research and a former competitive programmer himself. Li's technical report reveals an unexpectedly personal dimension: he compared the model's improvement trajectory to his own journey on Codeforces, the competitive programming platform where participants earn ratings based on contest performance.
Based on rough estimates mapping LiveCodeBench scores to Codeforces ratings, Li calculated that NousCoder-14B's improvemen t— from approximately the 1600-1750 rating range to 2100-2200 — mirrors a leap that took him nearly two years of sustained practice between ages 14 and 16. The model accomplished the equivalent in four days.
"Watching that final training run unfold was quite a surreal experience," Li wrote in the technical report.
But Li was quick to note an important caveat that speaks to broader questions about AI efficiency: he solved roughly 1,000 problems during those two years, while the model required 24,000. Humans, at least for now, remain dramatically more sample-efficient learners.
Inside the reinforcement learning system that trains on 24,000 competitive programming problems
NousCoder-14B's training process offers a window into the increasingly sophisticated techniques researchers use to improve AI reasoning capabilities through reinforcement learning.
The approach relies on what researchers call "verifiable rewards" — a system where the model generates code solutions, those solutions are executed against test cases, and the model receives a simple binary signal: correct or incorrect. This feedback loop, while conceptually straightforward, requires significant infrastructure to execute at scale.
Nous Research used Modal, a cloud computing platform, to run sandboxed code execution in parallel. Each of the 24,000 training problems contains hundreds of test cases on average, and the system must verify that generated code produces correct outputs within time and memory constraints — 15 seconds and 4 gigabytes, respectively.
The training employed a technique called DAPO (Dynamic Sampling Policy Optimization), which the researchers found performed slightly better than alternatives in their experiments. A key innovation involves "dynamic sampling" — discarding training examples where the model either solves all attempts or fails all attempts, since these provide no useful gradient signal for learning.
The researchers also adopted "iterative context extension," first training the model with a 32,000-token context window before expanding to 40,000 tokens. During evaluation, extending the context further to approximately 80,000 tokens produced the best results, with accuracy reaching 67.87 percent.
Perhaps most significantly, the training pipeline overlaps inference and verification — as soon as the model generates a solution, it begins work on the next problem while the previous solution is being checked. This pipelining, combined with asynchronous training where multiple model instances work in parallel, maximizes hardware utilization on expensive GPU clusters.
The looming data shortage that could slow AI coding model progress
Buried in Li's <a href="https://nousresearch.com/nouscoder-14b-a-co…
Konten dipersingkat otomatis.
🔗 Sumber: venturebeat.com
🤖 Catatan TOPINDIATOURS
Artikel ini adalah rangkuman otomatis dari beberapa sumber terpercaya. Kami pilih topik yang sedang tren agar kamu selalu update tanpa ketinggalan.
✅ Update berikutnya dalam 30 menit — tema random menanti!