TOPINDIATOURS Hot ai: Anthropic launches Cowork, a Claude Desktop agent that works in your

πŸ“Œ TOPINDIATOURS Breaking ai: Anthropic launches Cowork, a Claude Desktop agent tha

Anthropic released Cowork on Monday, a new AI agent capability that extends the power of its wildly successful Claude Code tool to non-technical users β€” and according to company insiders, the team built the entire feature in approximately a week and a half, largely using Claude Code itself.

The launch marks a major inflection point in the race to deliver practical AI agents to mainstream users, positioning Anthropic to compete not just with OpenAI and Google in conversational AI, but with Microsoft's Copilot in the burgeoning market for AI-powered productivity tools.

"Cowork lets you complete non-technical tasks much like how developers use Claude Code," the company announced via its official Claude account on X. The feature arrives as a research preview available exclusively to Claude Max subscribers β€” Anthropic's power-user tier priced between $100 and $200 per month β€” through the macOS desktop application.

For the past year, the industry narrative has focused on large language models that can write poetry or debug code. With Cowork, Anthropic is betting that the real enterprise value lies in an AI that can open a folder, read a messy pile of receipts, and generate a structured expense report without human hand-holding.

How developers using a coding tool for vacation research inspired Anthropic's latest product

The genesis of Cowork lies in Anthropic's recent success with the developer community. In late 2024, the company released Claude Code, a terminal-based tool that allowed software engineers to automate rote programming tasks. The tool was a hit, but Anthropic noticed a peculiar trend: users were forcing the coding tool to perform non-coding labor.

According to Boris Cherny, an engineer at Anthropic, the company observed users deploying the developer tool for an unexpectedly diverse array of tasks.

"Since we launched Claude Code, we saw people using it for all sorts of non-coding work: doing vacation research, building slide decks, cleaning up your email, cancelling subscriptions, recovering wedding photos from a hard drive, monitoring plant growth, controlling your oven," Cherny wrote on X. "These use cases are diverse and surprising β€” the reason is that the underlying Claude Agent is the best agent, and Opus 4.5 is the best model."

Recognizing this shadow usage, Anthropic effectively stripped the command-line complexity from their developer tool to create a consumer-friendly interface. In its blog post announcing the feature, Anthropic explained that developers "quickly began using it for almost everything else," which "prompted us to build Cowork: a simpler way for anyone β€” not just developers β€” to work with Claude in the very same way."

Inside the folder-based architecture that lets Claude read, edit, and create files on your computer

Unlike a standard chat interface where a user pastes text for analysis, Cowork requires a different level of trust and access. Users designate a specific folder on their local machine that Claude can access. Within that sandbox, the AI agent can read existing files, modify them, or create entirely new ones.

Anthropic offers several illustrative examples: reorganizing a cluttered downloads folder by sorting and intelligently renaming each file, generating a spreadsheet of expenses from a collection of receipt screenshots, or drafting a report from scattered notes across multiple documents.

"In Cowork, you give Claude access to a folder on your computer. Claude can then read, edit, or create files in that folder," the company explained on X. "Try it to create a spreadsheet from a pile of screenshots, or produce a first draft from scattered notes."

The architecture relies on what is known as an "agentic loop." When a user assigns a task, the AI does not merely generate a text response. Instead, it formulates a plan, executes steps in parallel, checks its own work, and asks for clarification if it hits a roadblock. Users can queue multiple tasks and let Claude process them simultaneously β€” a workflow Anthropic describes as feeling "much less like a back-and-forth and much more like leaving messages for a coworker."

The system is built on Anthropic's Claude Agent SDK, meaning it shares the same underlying architecture as Claude Code. Anthropic notes that Cowork "can take on many of the same tasks that Claude Code can handle, but in a more approachable form for non-coding tasks."

The recursive loop where AI builds AI: Claude Code reportedly wrote much of Claude Cowork

Perhaps the most remarkable detail surrounding Cowork's launch is the speed at which the tool was reportedly built β€” highlighting a recursive feedback loop where AI tools are being used to build better AI tools.

During a livestream hosted by Dan Shipper, Felix Rieseberg, an Anthropic employee, confirmed that the team built Cowork in approximately a week and a half.

Alex Volkov, who covers AI developments, expressed surprise at the timeline: "Holy shit Anthropic built 'Cowork' in the last… week and a half?!"

This prompted immediate speculation about how much of Cowork was itself built by Claude Code. Simon Smith, EVP of Generative AI at Klick Health, put it bluntly on X: "Claude Code wrote all of Claude Cowork. Can we all agree that we're in at least somewhat of a recursive improvement loop here?"

The implication is profound: Anthropic's AI coding agent may have substantially contributed to building its own non-technical sibling product. If true, this is one of the most visible examples yet of AI systems being used to accelerate their own development and expansion β€” a strategy that could widen the gap between AI labs that successfully deploy their own agents internally and those that do not.

Connectors, browser automation, and skills extend Cowork's reach beyond the local file system

Cowork doesn't operate in isolation. The feature integrates with Anthropic's existing ecosystem of connectors β€” tools that link Claude to external information sources and services such as Asana, Notion, PayPal, and other supported partners. Users who have configured these connections in the standard Claude interface can leverage them within Cowork sessions.

Additionally, Cowork can pair with Claude in Chrome, Anthropic's browser…

Konten dipersingkat otomatis.

πŸ”— Sumber: venturebeat.com


πŸ“Œ TOPINDIATOURS Breaking ai: Railway secures $100 million to challenge AWS with AI

Railway, a San Francisco-based cloud platform that has quietly amassed two million developers without spending a dollar on marketing, announced Thursday that it raised $100 million in a Series B funding round, as surging demand for artificial intelligence applications exposes the limitations of legacy cloud infrastructure.

TQ Ventures led the round, with participation from FPV Ventures, Redpoint, and Unusual Ventures. The investment values Railway as one of the most significant infrastructure startups to emerge during the AI boom, capitalizing on developer frustration with the complexity and cost of traditional platforms like Amazon Web Services and Google Cloud.

"As AI models get better at writing code, more and more people are asking the age-old question: where, and how, do I run my applications?" said Jake Cooper, Railway's 28-year-old founder and chief executive, in an exclusive interview with VentureBeat. "The last generation of cloud primitives were slow and outdated, and now with AI moving everything faster, teams simply can't keep up."

The funding is a dramatic acceleration for a company that has charted an unconventional path through the cloud computing industry. Railway raised just $24 million in total before this round, including a $20 million Series A from Redpoint in 2022. The company now processes more than 10 million deployments monthly and handles over one trillion requests through its edge network β€” metrics that rival far larger and better-funded competitors.

Why three-minute deploy times have become unacceptable in the age of AI coding assistants

Railway's pitch rests on a simple observation: the tools developers use to deploy and manage software were designed for a slower era. A standard build-and-deploy cycle using Terraform, the industry-standard infrastructure tool, takes two to three minutes. That delay, once tolerable, has become a critical bottleneck as AI coding assistants like Claude, ChatGPT, and Cursor can generate working code in seconds.

"When godly intelligence is on tap and can solve any problem in three seconds, those amalgamations of systems become bottlenecks," Cooper told VentureBeat. "What was really cool for humans to deploy in 10 seconds or less is now table stakes for agents."

The company claims its platform delivers deployments in under one second β€” fast enough to keep pace with AI-generated code. Customers report a tenfold increase in developer velocity and up to 65 percent cost savings compared to traditional cloud providers.

These numbers come directly from enterprise clients, not internal benchmarks. Daniel Lobaton, chief technology officer at G2X, a platform serving 100,000 federal contractors, measured deployment speed improvements of seven times faster and an 87 percent cost reduction after migrating to Railway. His infrastructure bill dropped from $15,000 per month to approximately $1,000.

"The work that used to take me a week on our previous infrastructure, I can do in Railway in like a day," Lobaton said. "If I want to spin up a new service and test different architectures, it would take so long on our old setup. In Railway I can launch six services in two minutes."

Inside the controversial decision to abandon Google Cloud and build data centers from scratch

What distinguishes Railway from competitors like Render and Fly.io is the depth of its vertical integration. In 2024, the company made the unusual decision to abandon Google Cloud entirely and build its own data centers, a move that echoes the famous Alan Kay maxim: "People who are really serious about software should make their own hardware."

"We wanted to design hardware in a way where we could build a differentiated experience," Cooper said. "Having full control over the network, compute, and storage layers lets us do really fast build and deploy loops, the kind that allows us to move at 'agentic speed' while staying 100 percent the smoothest ride in town."

The approach paid dividends during recent widespread outages that affected major cloud providers β€” Railway remained online throughout.

This soup-to-nuts control enables pricing that undercuts the hyperscalers by roughly 50 percent and newer cloud startups by three to four times. Railway charges by the second for actual compute usage: $0.00000386 per gigabyte-second of memory, $0.00000772 per vCPU-second, and $0.00000006 per gigabyte-second of storage. There are no charges for idle virtual machines β€” a stark contrast to the traditional cloud model where customers pay for provisioned capacity whether they use it or not.

"The conventional wisdom is that the big guys have economies of scale to offer better pricing," Cooper noted. "But when they're charging for VMs that usually sit idle in the cloud, and we've purpose-built everything to fit much more density on these machines, you have a big opportunity."

How 30 employees built a platform generating tens of millions in annual revenue

Railway has achieved its scale with a team of just 30 employees generating tens of millions in annual revenue β€” a ratio of revenue per employee that would be exceptional even for established software companies. The company grew revenue 3.5 times last year and continues to expand at 15 percent month-over-month.

Cooper emphasized that the fundraise was strategic rather than necessary. "We're default alive; there's no reason for us to raise money," he said. "We raised because we see a massive opportunity to accelerate, not because we needed to survive."

The company hired its first salesperson only last year and employs just two solutions engineers. Nearly all of Railway's two million users discovered the platform through word of mouth β€” developers telling other developers about a tool that actually works.

"We basically did the standard engineering thing: if you build it, they will come," Cooper recalled. "And to some degree, they came."

From side projects to Fortune 500 deployments: Railway's unlikely corporate expansion

Despite its grassroots developer community, Railway has made significant inroads into large organizations. The company claims that 31 percent of Fortune 500 companies now use its platform, though deployments range from company-wide infrastructure to individual team projects.

Notable customers include Bilt, the loyalty program company; Intuit's GoCo subsidiary; TripAdvisor's Cruise Critic; and MGM Resorts. Kernel, a Y Combinator-backed startup providing AI infrastructure to over 1,000 companies, runs its entire customer-facing system on Railway for $444 per month.

"At my previous company Clever, which sold …

Konten dipersingkat otomatis.

πŸ”— Sumber: venturebeat.com


πŸ€– Catatan TOPINDIATOURS

Artikel ini adalah rangkuman otomatis dari beberapa sumber terpercaya. Kami pilih topik yang sedang tren agar kamu selalu update tanpa ketinggalan.

βœ… Update berikutnya dalam 30 menit β€” tema random menanti!