TOPINDIATOURS Update ai: MIT Researchers Unveil “SEAL”: A New Step Towards Self-Improving

📌 TOPINDIATOURS Breaking ai: MIT Researchers Unveil “SEAL”: A New Step Towards Sel

The concept of AI self-improvement has been a hot topic in recent research circles, with a flurry of papers emerging and prominent figures like OpenAI CEO Sam Altman weighing in on the future of self-evolving intelligent systems. Now, a new paper from MIT, titled “Self-Adapting Language Models,” introduces SEAL (Self-Adapting LLMs), a novel framework that allows large language models (LLMs) to update their own weights. This development is seen as another significant step towards the realization of truly self-evolving AI.

The research paper, published yesterday, has already ignited considerable discussion, including on Hacker News. SEAL proposes a method where an LLM can generate its own training data through “self-editing” and subsequently update its weights based on new inputs. Crucially, this self-editing process is learned via reinforcement learning, with the reward mechanism tied to the updated model’s downstream performance.

The timing of this paper is particularly notable given the recent surge in interest surrounding AI self-evolution. Earlier this month, several other research efforts garnered attention, including Sakana AI and the University of British Columbia’s “Darwin-Gödel Machine (DGM),” CMU’s “Self-Rewarding Training (SRT),” Shanghai Jiao Tong University’s “MM-UPT” framework for continuous self-improvement in multimodal large models, and the “UI-Genie” self-improvement framework from The Chinese University of Hong Kong in collaboration with vivo.

Adding to the buzz, OpenAI CEO Sam Altman recently shared his vision of a future with self-improving AI and robots in his blog post, “The Gentle Singularity.” He posited that while the initial millions of humanoid robots would need traditional manufacturing, they would then be able to “operate the entire supply chain to build more robots, which can in turn build more chip fabrication facilities, data centers, and so on.” This was quickly followed by a tweet from @VraserX, claiming an OpenAI insider revealed the company was already running recursively self-improving AI internally, a claim that sparked widespread debate about its veracity.

Regardless of the specifics of internal OpenAI developments, the MIT paper on SEAL provides concrete evidence of AI’s progression towards self-evolution.

Understanding SEAL: Self-Adapting Language Models

The core idea behind SEAL is to enable language models to improve themselves when encountering new data by generating their own synthetic data and optimizing their parameters through self-editing. The model’s training objective is to directly generate these self-edits (SEs) using data provided within the model’s context.

The generation of these self-edits is learned through reinforcement learning. The model is rewarded when the generated self-edits, once applied, lead to improved performance on the target task. Therefore, SEAL can be conceptualized as an algorithm with two nested loops: an outer reinforcement learning (RL) loop that optimizes the generation of self-edits, and an inner update loop that uses the generated self-edits to update the model via gradient descent.

This method can be viewed as an instance of meta-learning, where the focus is on how to generate effective self-edits in a meta-learning fashion.

A General Framework

SEAL operates on a single task instance (C,τ), where C is context information relevant to the task, and τ defines the downstream evaluation for assessing the model’s adaptation. For example, in a knowledge integration task, C might be a passage to be integrated into the model’s internal knowledge, and τ a set of questions about that passage.

Given C, the model generates a self-edit SE, which then updates its parameters through supervised fine-tuning: θ′←SFT(θ,SE). Reinforcement learning is used to optimize this self-edit generation: the model performs an action (generates SE), receives a reward r based on LMθ′’s performance on τ, and updates its policy to maximize the expected reward.

The researchers found that traditional online policy methods like GRPO and PPO led to unstable training. They ultimately opted for ReST^EM, a simpler, filtering-based behavioral cloning approach from a DeepMind paper. This method can be viewed as an Expectation-Maximization (EM) process, where the E-step samples candidate outputs from the current model policy, and the M-step reinforces only those samples that yield a positive reward through supervised fine-tuning.

The paper also notes that while the current implementation uses a single model to generate and learn from self-edits, these roles could be separated in a “teacher-student” setup.

Instantiating SEAL in Specific Domains

The MIT team instantiated SEAL in two specific domains: knowledge integration and few-shot learning.

  • Knowledge Integration: The goal here is to effectively integrate information from articles into the model’s weights.
  • Few-Shot Learning: This involves the model adapting to new tasks with very few examples.

Experimental Results

The experimental results for both few-shot learning and knowledge integration demonstrate the effectiveness of the SEAL framework.

In few-shot learning, using a Llama-3.2-1B-Instruct model, SEAL significantly improved adaptation success rates, achieving 72.5% compared to 20% for models using basic self-edits without RL training, and 0% without adaptation. While still below “Oracle TTT” (an idealized baseline), this indicates substantial progress.

For knowledge integration, using a larger Qwen2.5-7B model to integrate new facts from SQuAD articles, SEAL consistently outperformed baseline methods. Training with synthetically generated data from the base Qwen-2.5-7B model already showed notable improvements, and subsequent reinforcement learning further boosted performance. The accuracy also showed rapid improvement over external RL iterations, often surpassing setups using GPT-4.1 generated data within just two iterations.

Qualitative examples from the paper illustrate how reinforcement learning leads to the generation of more detailed self-edits, resulting in improved performance.

While promising, the researchers also acknowledge some limitations of the SEAL framework, including aspects related to catastrophic forgetting, computational overhead, and context-dependent evaluation. These are discussed in detail in the original paper.

Original Paper: https://arxiv.org/pdf/2506.10943

Project Site: https://jyopari.github.io/posts/seal

Github Repo: https://github.com/Continual-Intelligence/SEAL

The post MIT Researchers Unveil “SEAL”: A New Step Towards Self-Improving AI first appeared on Synced.

🔗 Sumber: syncedreview.com


📌 TOPINDIATOURS Eksklusif ai: Claude Code costs up to $200 a month. Goose does the

The artificial intelligence coding revolution comes with a catch: it's expensive.

Claude Code, Anthropic's terminal-based AI agent that can write, debug, and deploy code autonomously, has captured the imagination of software developers worldwide. But its pricing — ranging from $20 to $200 per month depending on usage — has sparked a growing rebellion among the very programmers it aims to serve.

Now, a free alternative is gaining traction. Goose, an open-source AI agent developed by Block (the financial technology company formerly known as Square), offers nearly identical functionality to Claude Code but runs entirely on a user's local machine. No subscription fees. No cloud dependency. No rate limits that reset every five hours.

"Your data stays with you, period," said Parth Sareen, a software engineer who demonstrated the tool during a recent livestream. The comment captures the core appeal: Goose gives developers complete control over their AI-powered workflow, including the ability to work offline — even on an airplane.

The project has exploded in popularity. Goose now boasts more than 26,100 stars on GitHub, the code-sharing platform, with 362 contributors and 102 releases since its launch. The latest version, 1.20.1, shipped on January 19, 2026, reflecting a development pace that rivals commercial products.

For developers frustrated by Claude Code's pricing structure and usage caps, Goose represents something increasingly rare in the AI industry: a genuinely free, no-strings-attached option for serious work.

Anthropic's new rate limits spark a developer revolt

To understand why Goose matters, you need to understand the Claude Code pricing controversy.

Anthropic, the San Francisco artificial intelligence company founded by former OpenAI executives, offers Claude Code as part of its subscription tiers. The free plan provides no access whatsoever. The Pro plan, at $17 per month with annual billing (or $20 monthly), limits users to just 10 to 40 prompts every five hours — a constraint that serious developers exhaust within minutes of intensive work.

The Max plans, at $100 and $200 per month, offer more headroom: 50 to 200 prompts and 200 to 800 prompts respectively, plus access to Anthropic's most powerful model, Claude 4.5 Opus. But even these premium tiers come with restrictions that have inflamed the developer community.

In late July, Anthropic announced new weekly rate limits. Under the system, Pro users receive 40 to 80 hours of Sonnet 4 usage per week. Max users at the $200 tier get 240 to 480 hours of Sonnet 4, plus 24 to 40 hours of Opus 4. Nearly five months later, the frustration has not subsided.

The problem? Those "hours" are not actual hours. They represent token-based limits that vary wildly depending on codebase size, conversation length, and the complexity of the code being processed. Independent analysis suggests the actual per-session limits translate to roughly 44,000 tokens for Pro users and 220,000 tokens for the $200 Max plan.

"It's confusing and vague," one developer wrote in a widely shared analysis. "When they say '24-40 hours of Opus 4,' that doesn't really tell you anything useful about what you're actually getting."

The backlash on Reddit and developer forums has been fierce. Some users report hitting their daily limits within 30 minutes of intensive coding. Others have canceled their subscriptions entirely, calling the new restrictions "a joke" and "unusable for real work."

Anthropic has defended the changes, stating that the limits affect fewer than five percent of users and target people running Claude Code "continuously in the background, 24/7." But the company has not clarified whether that figure refers to five percent of Max subscribers or five percent of all users — a distinction that matters enormously.

How Block built a free AI coding agent that works offline

Goose takes a radically different approach to the same problem.

Built by Block, the payments company led by Jack Dorsey, Goose is what engineers call an "on-machine AI agent." Unlike Claude Code, which sends your queries to Anthropic's servers for processing, Goose can run entirely on your local computer using open-source language models that you download and control yourself.

The project's documentation describes it as going "beyond code suggestions" to "install, execute, edit, and test with any LLM." That last phrase — "any LLM" — is the key differentiator. Goose is model-agnostic by design.

You can connect Goose to Anthropic's Claude models if you have API access. You can use OpenAI's GPT-5 or Google's Gemini. You can route it through services like Groq or OpenRouter. Or — and this is where things get interesting — you can run it entirely locally using tools like Ollama, which let you download and execute open-source models on your own hardware.

The practical implications are significant. With a local setup, there are no subscription fees, no usage caps, no rate limits, and no concerns about your code being sent to external servers. Your conversations with the AI never leave your machine.

"I use Ollama all the time on planes — it's a lot of fun!" Sareen noted during a demonstration, highlighting how local models free developers from the constraints of internet connectivity.

What Goose can do that traditional code assistants can't

Goose operates as a command-line tool or desktop application that can autonomously perform complex development tasks. It can build entire projects from scratch, write and execute code, debug failures, orchestrate workflows across multiple files, and interact with external APIs — all without constant human oversight.

The architecture relies on what the AI industry calls "tool calling" or "<a href="https://platform.openai…

Konten dipersingkat otomatis.

🔗 Sumber: venturebeat.com


🤖 Catatan TOPINDIATOURS

Artikel ini adalah rangkuman otomatis dari beberapa sumber terpercaya. Kami pilih topik yang sedang tren agar kamu selalu update tanpa ketinggalan.

✅ Update berikutnya dalam 30 menit — tema random menanti!