π TOPINDIATOURS Eksklusif ai: Claude Code costs up to $200 a month. Goose does the
The artificial intelligence coding revolution comes with a catch: it's expensive.
Claude Code, Anthropic's terminal-based AI agent that can write, debug, and deploy code autonomously, has captured the imagination of software developers worldwide. But its pricing β ranging from $20 to $200 per month depending on usage β has sparked a growing rebellion among the very programmers it aims to serve.
Now, a free alternative is gaining traction. Goose, an open-source AI agent developed by Block (the financial technology company formerly known as Square), offers nearly identical functionality to Claude Code but runs entirely on a user's local machine. No subscription fees. No cloud dependency. No rate limits that reset every five hours.
"Your data stays with you, period," said Parth Sareen, a software engineer who demonstrated the tool during a recent livestream. The comment captures the core appeal: Goose gives developers complete control over their AI-powered workflow, including the ability to work offline β even on an airplane.
The project has exploded in popularity. Goose now boasts more than 26,100 stars on GitHub, the code-sharing platform, with 362 contributors and 102 releases since its launch. The latest version, 1.20.1, shipped on January 19, 2026, reflecting a development pace that rivals commercial products.
For developers frustrated by Claude Code's pricing structure and usage caps, Goose represents something increasingly rare in the AI industry: a genuinely free, no-strings-attached option for serious work.
Anthropic's new rate limits spark a developer revolt
To understand why Goose matters, you need to understand the Claude Code pricing controversy.
Anthropic, the San Francisco artificial intelligence company founded by former OpenAI executives, offers Claude Code as part of its subscription tiers. The free plan provides no access whatsoever. The Pro plan, at $17 per month with annual billing (or $20 monthly), limits users to just 10 to 40 prompts every five hours β a constraint that serious developers exhaust within minutes of intensive work.
The Max plans, at $100 and $200 per month, offer more headroom: 50 to 200 prompts and 200 to 800 prompts respectively, plus access to Anthropic's most powerful model, Claude 4.5 Opus. But even these premium tiers come with restrictions that have inflamed the developer community.
In late July, Anthropic announced new weekly rate limits. Under the system, Pro users receive 40 to 80 hours of Sonnet 4 usage per week. Max users at the $200 tier get 240 to 480 hours of Sonnet 4, plus 24 to 40 hours of Opus 4. Nearly five months later, the frustration has not subsided.
The problem? Those "hours" are not actual hours. They represent token-based limits that vary wildly depending on codebase size, conversation length, and the complexity of the code being processed. Independent analysis suggests the actual per-session limits translate to roughly 44,000 tokens for Pro users and 220,000 tokens for the $200 Max plan.
"It's confusing and vague," one developer wrote in a widely shared analysis. "When they say '24-40 hours of Opus 4,' that doesn't really tell you anything useful about what you're actually getting."
The backlash on Reddit and developer forums has been fierce. Some users report hitting their daily limits within 30 minutes of intensive coding. Others have canceled their subscriptions entirely, calling the new restrictions "a joke" and "unusable for real work."
Anthropic has defended the changes, stating that the limits affect fewer than five percent of users and target people running Claude Code "continuously in the background, 24/7." But the company has not clarified whether that figure refers to five percent of Max subscribers or five percent of all users β a distinction that matters enormously.
How Block built a free AI coding agent that works offline
Goose takes a radically different approach to the same problem.
Built by Block, the payments company led by Jack Dorsey, Goose is what engineers call an "on-machine AI agent." Unlike Claude Code, which sends your queries to Anthropic's servers for processing, Goose can run entirely on your local computer using open-source language models that you download and control yourself.
The project's documentation describes it as going "beyond code suggestions" to "install, execute, edit, and test with any LLM." That last phrase β "any LLM" β is the key differentiator. Goose is model-agnostic by design.
You can connect Goose to Anthropic's Claude models if you have API access. You can use OpenAI's GPT-5 or Google's Gemini. You can route it through services like Groq or OpenRouter. Or β and this is where things get interesting β you can run it entirely locally using tools like Ollama, which let you download and execute open-source models on your own hardware.
The practical implications are significant. With a local setup, there are no subscription fees, no usage caps, no rate limits, and no concerns about your code being sent to external servers. Your conversations with the AI never leave your machine.
"I use Ollama all the time on planes β it's a lot of fun!" Sareen noted during a demonstration, highlighting how local models free developers from the constraints of internet connectivity.
What Goose can do that traditional code assistants can't
Goose operates as a command-line tool or desktop application that can autonomously perform complex development tasks. It can build entire projects from scratch, write and execute code, debug failures, orchestrate workflows across multiple files, and interact with external APIs β all without constant human oversight.
The architecture relies on what the AI industry calls "tool calling" or "<a href="https://platform.openai…
Konten dipersingkat otomatis.
π Sumber: venturebeat.com
π TOPINDIATOURS Eksklusif ai: ByteDance Introduces Astra: A Dual-Model Architectur
The increasing integration of robots across various sectors, from industrial manufacturing to daily life, highlights a growing need for advanced navigation systems. However, contemporary robot navigation systems face significant challenges in diverse and complex indoor environments, exposing the limitations of traditional approaches. Addressing the fundamental questions of “Where am I?”, “Where am I going?”, and “How do I get there?”, ByteDance has developed Astra, an innovative dual-model architecture designed to overcome these traditional navigation bottlenecks and enable general-purpose mobile robots.
Traditional navigation systems typically consist of multiple, smaller, and often rule-based modules to handle the core challenges of target localization, self-localization, and path planning. Target localization involves understanding natural language or image cues to pinpoint a destination on a map. Self-localization requires a robot to determine its precise position within a map, especially challenging in repetitive environments like warehouses where traditional methods often rely on artificial landmarks (e.g., QR codes). Path planning further divides into global planning for rough route generation and local planning for real-time obstacle avoidance and reaching intermediate waypoints.
While foundation models have shown promise in integrating smaller models to tackle broader tasks, the optimal number of models and their effective integration for comprehensive navigation remained an open question.
ByteDance’s Astra, detailed in their paper “Astra: Toward General-Purpose Mobile Robots via Hierarchical Multimodal Learning” (website: https://astra-mobility.github.io/), addresses these limitations. Following the System 1/System 2 paradigm, Astra features two primary sub-models: Astra-Global and Astra-Local. Astra-Global handles low-frequency tasks like target and self-localization, while Astra-Local manages high-frequency tasks such as local path planning and odometry estimation. This architecture promises to revolutionize how robots navigate complex indoor spaces.
Astra-Global: The Intelligent Brain for Global Localization
Astra-Global serves as the intelligent core of the Astra architecture, responsible for critical low-frequency tasks: self-localization and target localization. It functions as a Multimodal Large Language Model (MLLM), adept at processing both visual and linguistic inputs to achieve precise global positioning within a map. Its strength lies in utilizing a hybrid topological-semantic graph as contextual input, allowing the model to accurately locate positions based on query images or text prompts.
The construction of this robust localization system begins with offline mapping. The research team developed an offline method to build a hybrid topological-semantic graph G=(V,E,L):
- V (Nodes): Keyframes, obtained by temporal downsampling of input video and SfM-estimated 6-Degrees-of-Freedom (DoF) camera poses, act as nodes encoding camera poses and landmark references.
- E (Edges): Undirected edges establish connectivity based on relative node poses, crucial for global path planning.
- L (Landmarks): Semantic landmark information is extracted by Astra-Global from visual data at each node, enriching the map’s semantic understanding. These landmarks store semantic attributes and are connected to multiple nodes via co-visibility relationships.
In practical localization, Astra-Global’s self-localization and target localization capabilities leverage a coarse-to-fine two-stage process for visual-language localization. The coarse stage analyzes input images and localization prompts, detects landmarks, establishes correspondence with a pre-built landmark map, and filters candidates based on visual consistency. The fine stage then uses the query image and coarse output to sample reference map nodes from the offline map, comparing their visual and positional information to directly output the predicted pose.
For language-based target localization, the model interprets natural language instructions, identifies relevant landmarks using their functional descriptions within the map, and then leverages landmark-to-node association mechanisms to locate relevant nodes, retrieving target images and 6-DoF poses.
To empower Astra-Global with robust localization abilities, the team employed a meticulous training methodology. Using Qwen2.5-VL as the backbone, they combined Supervised Fine-Tuning (SFT) with Group Relative Policy Optimization (GRPO). SFT involved diverse datasets for various tasks, including coarse and fine localization, co-visibility detection, and motion trend estimation. In the GRPO phase, a rule-based reward function (including format, landmark extraction, map matching, and extra landmark rewards) was used to train for visual-language localization. Experiments showed GRPO significantly improved Astra-Global’s zero-shot generalization, achieving 99.9% localization accuracy in unseen home environments, surpassing SFT-only methods.
Astra-Local: The Intelligent Assistant for Local Planning
Astra-Local acts as the intelligent assistant for Astra’s high-frequency tasks, a multi-task network capable of efficiently generating local paths and accurately estimating odometry from sensor data. Its architecture comprises three core components: a 4D spatio-temporal encoder, a planning head, and an odometry head.
The 4D spatio-temporal encoder replaces traditional mobile stack perception and prediction modules. It begins with a 3D spatial encoder that processes N omnidirectional images through a Vision Transformer (ViT) and Lift-Splat-Shoot to convert 2D image features into 3D voxel features. This 3D encoder is trained using self-supervised learning via 3D volumetric differentiable neural rendering. The 4D spatio-temporal encoder then builds upon the 3D encoder, taking past voxel features and future timestamps as input to predict future voxel features through ResNet and DiT modules, providing current and future environmental representations for planning and odometry.
The planning head, based on pre-trained 4D features, robot speed, and task information, generates executable trajectories using Transformer-based flow matching. To prevent collisions, the planning head incorporates a masked ESDF loss (Euclidean Signed Distance Field). This loss calculates the ESDF of a 3D occupancy map and applies a 2D ground truth trajectory mask, significantly reducing collision rates. Experiments demonstrate its superior performance in collision rate and overall score on out-of-distribution (OOD) datasets compared to other methods.
The odometry head predicts the robot’s relative pose using current and past 4D features and additional sensor data (e.g., IMU, wheel data). It trains a Transformer model to fuse information from different sensors. Each sensor modality is processed by a specific tokenizer, combined with modality embeddings and temporal positional embeddi…
Konten dipersingkat otomatis.
π Sumber: syncedreview.com
π€ Catatan TOPINDIATOURS
Artikel ini adalah rangkuman otomatis dari beberapa sumber terpercaya. Kami pilih topik yang sedang tren agar kamu selalu update tanpa ketinggalan.
β Update berikutnya dalam 30 menit β tema random menanti!