TOPINDIATOURS Breaking ai: Listen Labs raises $69M after viral billboard hiring stunt to s

📌 TOPINDIATOURS Eksklusif ai: Listen Labs raises $69M after viral billboard hiring

Alfred Wahlforss was running out of options. His startup, Listen Labs, needed to hire over 100 engineers, but competing against Mark Zuckerberg's $100 million offers seemed impossible. So he spent $5,000 — a fifth of his marketing budget — on a billboard in San Francisco displaying what looked like gibberish: five strings of random numbers.

The numbers were actually AI tokens. Decoded, they led to a coding challenge: build an algorithm to act as a digital bouncer at Berghain, the Berlin nightclub famous for rejecting nearly everyone at the door. Within days, thousands attempted the puzzle. 430 cracked it. Some got hired. The winner flew to Berlin, all expenses paid.

That unconventional approach has now attracted $69 million in Series B funding, led by Ribbit Capital with participation from Evantic and existing investors Sequoia Capital, Conviction, and Pear VC. The round values Listen Labs at $500 million and brings its total capital to $100 million. In nine months since launch, the company has grown annualized revenue by 15x to eight figures and conducted over one million AI-powered interviews.

"When you obsess over customers, everything else follows," Wahlforss said in an interview with VentureBeat. "Teams that use Listen bring the customer into every decision, from marketing to product, and when the customer is delighted, everyone is."

Why traditional market research is broken, and what Listen Labs is building to fix it

Listen's AI researcher finds participants, conducts in-depth interviews, and delivers actionable insights in hours, not weeks. The platform replaces the traditional choice between quantitative surveys — which provide statistical precision but miss nuance—and qualitative interviews, which deliver depth but cannot scale.

Wahlforss explained the limitation of existing approaches: "Essentially surveys give you false precision because people end up answering the same question… You can't get the outliers. People are actually not honest on surveys." The alternative, one-on-one human interviews, "gives you a lot of depth. You can ask follow up questions. You can kind of double check if they actually know what they're talking about. And the problem is you can't scale that."

The platform works in four steps: users create a study with AI assistance, Listen recruits participants from its global network of 30 million people, an AI moderator conducts in-depth interviews with follow-up questions, and results are packaged into executive-ready reports including key themes, highlight reels, and slide decks.

What distinguishes Listen's approach is its use of open-ended video conversations rather than multiple-choice forms. "In a survey, you can kind of guess what you should answer, and you have four options," Wahlforss said. "Oh, they probably want me to buy high income. Let me click on that button versus an open ended response. It just generates much more honesty."

The dirty secret of the $140 billion market research industry: rampant fraud

Listen finds and qualifies the right participants in its global network of 30 million people. But building that panel required confronting what Wahlforss called "one of the most shocking things that we've learned when we entered this industry"—rampant fraud.

"Essentially, there's a financial transaction involved, which means there will be bad players," he explained. "We actually had some of the largest companies, some of them have billions in revenue, send us people who claim to be kind of enterprise buyers to our platform and our system immediately detected, like, fraud, fraud, fraud, fraud, fraud."

The company built what it calls a "quality guard" that cross-references LinkedIn profiles with video responses to verify identity, checks consistency across how participants answer questions, and flags suspicious patterns. The result, according to Wahlforss: "People talk three times more. They're much more honest when they talk about sensitive topics like politics and mental health."

Emeritus, an online education company that uses Listen, reported that approximately 20% of survey responses previously fell into the fraudulent or low-quality category. With Listen, they reduced this to almost zero. "We did not have to replace any responses because of fraud or gibberish information," said Gabrielli Tiburi, Assistant Manager of Customer Insights at Emeritus.

How Microsoft, Sweetgreen, and Chubbies are using AI interviews to build better products

The speed advantage has proven central to Listen's pitch. Traditional customer research at Microsoft could take four to six weeks to generate insights. "By the time we get to them, either the decision has been made or we lose out on the opportunity to actually influence it," said Romani Patel, Senior Research Manager at Microsoft.

With Listen, Microsoft can now get insights in days, and in many cases, within hours.

The platform has already powered several high-profile initiatives. Microsoft used Listen Labs to collect global customer stories for its 50th anniversary celebration. "We wanted users to share how Copilot is empowering them to bring their best self forward," Patel said, "and we were able to collect those user video stories within a day." Traditionally, that kind of work would have taken six to eight weeks.

Simple Modern, an Oklahoma-based drinkware company, used Listen to test a new product concept. The process took about an hour to write questions, an hour to launch the study, and 2.5 hours to receive feedback from 120 people across the country. "We went from 'Should we even have this product?' to 'How should we launch it?'" said Chris Hoyle, the company's Chief Marketing Officer.

Chubbies, the shorts brand, achieved a 24x increase in youth research participation—growing from 5 to 120 participants — by using Listen to overcome the scheduling challenges of traditional focus groups with children. "There's school, sports, dinner, and homework," explained Lauren Neville, Director of Insights and Innovation. "I had to find a way to hear from them that fit into their schedules."

The company also discovered product issues through AI interviews that might have gone undetected otherwise. Wahlforss described how the AI "through conversations, realized there were like issues with the the kids short line, and decided to, like, interview hundreds of kids. And I understand that there were issues in the liner of the shorts and that they were, like, scratchy, quote, unquote, according to the people interviewed." The redesigned product became "a blockbuster hit."

The Jevons paradox explains why cheaper research creates more demand, not less

Listen Labs is entering a massive but fragmented market. Wahlforss cited research from Andreessen Horowitz estimating the market research ind…

Konten dipersingkat otomatis.

🔗 Sumber: venturebeat.com


📌 TOPINDIATOURS Breaking ai: Adobe Research Unlocking Long-Term Memory in Video Wo

Video world models, which predict future frames conditioned on actions, hold immense promise for artificial intelligence, enabling agents to plan and reason in dynamic environments. Recent advancements, particularly with video diffusion models, have shown impressive capabilities in generating realistic future sequences. However, a significant bottleneck remains: maintaining long-term memory. Current models struggle to remember events and states from far in the past due to the high computational cost associated with processing extended sequences using traditional attention layers. This limits their ability to perform complex tasks requiring sustained understanding of a scene.

A new paper, “Long-Context State-Space Video World Models” by researchers from Stanford University, Princeton University, and Adobe Research, proposes an innovative solution to this challenge. They introduce a novel architecture that leverages State-Space Models (SSMs) to extend temporal memory without sacrificing computational efficiency.

The core problem lies in the quadratic computational complexity of attention mechanisms with respect to sequence length. As the video context grows, the resources required for attention layers explode, making long-term memory impractical for real-world applications. This means that after a certain number of frames, the model effectively “forgets” earlier events, hindering its performance on tasks that demand long-range coherence or reasoning over extended periods.

The authors’ key insight is to leverage the inherent strengths of State-Space Models (SSMs) for causal sequence modeling. Unlike previous attempts that retrofitted SSMs for non-causal vision tasks, this work fully exploits their advantages in processing sequences efficiently.

The proposed Long-Context State-Space Video World Model (LSSVWM) incorporates several crucial design choices:

  1. Block-wise SSM Scanning Scheme: This is central to their design. Instead of processing the entire video sequence with a single SSM scan, they employ a block-wise scheme. This strategically trades off some spatial consistency (within a block) for significantly extended temporal memory. By breaking down the long sequence into manageable blocks, they can maintain a compressed “state” that carries information across blocks, effectively extending the model’s memory horizon.
  2. Dense Local Attention: To compensate for the potential loss of spatial coherence introduced by the block-wise SSM scanning, the model incorporates dense local attention. This ensures that consecutive frames within and across blocks maintain strong relationships, preserving the fine-grained details and consistency necessary for realistic video generation. This dual approach of global (SSM) and local (attention) processing allows them to achieve both long-term memory and local fidelity.

The paper also introduces two key training strategies to further improve long-context performance:

  • Diffusion Forcing: This technique encourages the model to generate frames conditioned on a prefix of the input, effectively forcing it to learn to maintain consistency over longer durations. By sometimes not sampling a prefix and keeping all tokens noised, the training becomes equivalent to diffusion forcing, which is highlighted as a special case of long-context training where the prefix length is zero. This pushes the model to generate coherent sequences even from minimal initial context.
  • Frame Local Attention: For faster training and sampling, the authors implemented a “frame local attention” mechanism. This utilizes FlexAttention to achieve significant speedups compared to a fully causal mask. By grouping frames into chunks (e.g., chunks of 5 with a frame window size of 10), frames within a chunk maintain bidirectionality while also attending to frames in the previous chunk. This allows for an effective receptive field while optimizing computational load.

The researchers evaluated their LSSVWM on challenging datasets, including Memory Maze and Minecraft, which are specifically designed to test long-term memory capabilities through spatial retrieval and reasoning tasks.

The experiments demonstrate that their approach substantially surpasses baselines in preserving long-range memory. Qualitative results, as shown in supplementary figures (e.g., S1, S2, S3), illustrate that LSSVWM can generate more coherent and accurate sequences over extended periods compared to models relying solely on causal attention or even Mamba2 without frame local attention. For instance, on reasoning tasks for the maze dataset, their model maintains better consistency and accuracy over long horizons. Similarly, for retrieval tasks, LSSVWM shows improved ability to recall and utilize information from distant past frames. Crucially, these improvements are achieved while maintaining practical inference speeds, making the models suitable for interactive applications.

The Paper Long-Context State-Space Video World Models is on arXiv

The post Adobe Research Unlocking Long-Term Memory in Video World Models with State-Space Models first appeared on Synced.

🔗 Sumber: syncedreview.com


🤖 Catatan TOPINDIATOURS

Artikel ini adalah rangkuman otomatis dari beberapa sumber terpercaya. Kami pilih topik yang sedang tren agar kamu selalu update tanpa ketinggalan.

✅ Update berikutnya dalam 30 menit — tema random menanti!