📌 TOPINDIATOURS Breaking ai: MIT Researchers Unveil “SEAL”: A New Step Towards Sel
The concept of AI self-improvement has been a hot topic in recent research circles, with a flurry of papers emerging and prominent figures like OpenAI CEO Sam Altman weighing in on the future of self-evolving intelligent systems. Now, a new paper from MIT, titled “Self-Adapting Language Models,” introduces SEAL (Self-Adapting LLMs), a novel framework that allows large language models (LLMs) to update their own weights. This development is seen as another significant step towards the realization of truly self-evolving AI.
The research paper, published yesterday, has already ignited considerable discussion, including on Hacker News. SEAL proposes a method where an LLM can generate its own training data through “self-editing” and subsequently update its weights based on new inputs. Crucially, this self-editing process is learned via reinforcement learning, with the reward mechanism tied to the updated model’s downstream performance.
The timing of this paper is particularly notable given the recent surge in interest surrounding AI self-evolution. Earlier this month, several other research efforts garnered attention, including Sakana AI and the University of British Columbia’s “Darwin-Gödel Machine (DGM),” CMU’s “Self-Rewarding Training (SRT),” Shanghai Jiao Tong University’s “MM-UPT” framework for continuous self-improvement in multimodal large models, and the “UI-Genie” self-improvement framework from The Chinese University of Hong Kong in collaboration with vivo.
Adding to the buzz, OpenAI CEO Sam Altman recently shared his vision of a future with self-improving AI and robots in his blog post, “The Gentle Singularity.” He posited that while the initial millions of humanoid robots would need traditional manufacturing, they would then be able to “operate the entire supply chain to build more robots, which can in turn build more chip fabrication facilities, data centers, and so on.” This was quickly followed by a tweet from @VraserX, claiming an OpenAI insider revealed the company was already running recursively self-improving AI internally, a claim that sparked widespread debate about its veracity.
Regardless of the specifics of internal OpenAI developments, the MIT paper on SEAL provides concrete evidence of AI’s progression towards self-evolution.
Understanding SEAL: Self-Adapting Language Models
The core idea behind SEAL is to enable language models to improve themselves when encountering new data by generating their own synthetic data and optimizing their parameters through self-editing. The model’s training objective is to directly generate these self-edits (SEs) using data provided within the model’s context.
The generation of these self-edits is learned through reinforcement learning. The model is rewarded when the generated self-edits, once applied, lead to improved performance on the target task. Therefore, SEAL can be conceptualized as an algorithm with two nested loops: an outer reinforcement learning (RL) loop that optimizes the generation of self-edits, and an inner update loop that uses the generated self-edits to update the model via gradient descent.
This method can be viewed as an instance of meta-learning, where the focus is on how to generate effective self-edits in a meta-learning fashion.
A General Framework
SEAL operates on a single task instance (C,τ), where C is context information relevant to the task, and τ defines the downstream evaluation for assessing the model’s adaptation. For example, in a knowledge integration task, C might be a passage to be integrated into the model’s internal knowledge, and τ a set of questions about that passage.
Given C, the model generates a self-edit SE, which then updates its parameters through supervised fine-tuning: θ′←SFT(θ,SE). Reinforcement learning is used to optimize this self-edit generation: the model performs an action (generates SE), receives a reward r based on LMθ′’s performance on τ, and updates its policy to maximize the expected reward.
The researchers found that traditional online policy methods like GRPO and PPO led to unstable training. They ultimately opted for ReST^EM, a simpler, filtering-based behavioral cloning approach from a DeepMind paper. This method can be viewed as an Expectation-Maximization (EM) process, where the E-step samples candidate outputs from the current model policy, and the M-step reinforces only those samples that yield a positive reward through supervised fine-tuning.
The paper also notes that while the current implementation uses a single model to generate and learn from self-edits, these roles could be separated in a “teacher-student” setup.
Instantiating SEAL in Specific Domains
The MIT team instantiated SEAL in two specific domains: knowledge integration and few-shot learning.
- Knowledge Integration: The goal here is to effectively integrate information from articles into the model’s weights.
- Few-Shot Learning: This involves the model adapting to new tasks with very few examples.
Experimental Results
The experimental results for both few-shot learning and knowledge integration demonstrate the effectiveness of the SEAL framework.
In few-shot learning, using a Llama-3.2-1B-Instruct model, SEAL significantly improved adaptation success rates, achieving 72.5% compared to 20% for models using basic self-edits without RL training, and 0% without adaptation. While still below “Oracle TTT” (an idealized baseline), this indicates substantial progress.
For knowledge integration, using a larger Qwen2.5-7B model to integrate new facts from SQuAD articles, SEAL consistently outperformed baseline methods. Training with synthetically generated data from the base Qwen-2.5-7B model already showed notable improvements, and subsequent reinforcement learning further boosted performance. The accuracy also showed rapid improvement over external RL iterations, often surpassing setups using GPT-4.1 generated data within just two iterations.
Qualitative examples from the paper illustrate how reinforcement learning leads to the generation of more detailed self-edits, resulting in improved performance.
While promising, the researchers also acknowledge some limitations of the SEAL framework, including aspects related to catastrophic forgetting, computational overhead, and context-dependent evaluation. These are discussed in detail in the original paper.
Original Paper: https://arxiv.org/pdf/2506.10943
Project Site: https://jyopari.github.io/posts/seal
Github Repo: https://github.com/Continual-Intelligence/SEAL
The post MIT Researchers Unveil “SEAL”: A New Step Towards Self-Improving AI first appeared on Synced.
🔗 Sumber: syncedreview.com
📌 TOPINDIATOURS Eksklusif ai: Kai-Fu Lee's brutal assessment: America is alre
China is on track to dominate consumer artificial intelligence applications and robotics manufacturing within years, but the United States will maintain its substantial lead in enterprise AI adoption and cutting-edge research, according to Kai-Fu Lee, one of the world's most prominent AI scientists and investors.
In a rare, unvarnished assessment delivered via video link from Beijing to the TED AI conference in San Francisco Tuesday, Lee — a former executive at Apple, Microsoft, and Google who now runs both a major venture capital firm and his own AI company — laid out a technology landscape splitting along geographic and economic lines, with profound implications for both commercial competition and national security.
"China's robotics has the advantage of having integrated AI into much lower costs, better supply chain and fast turnaround, so companies like Unitree are actually the farthest ahead in the world in terms of building affordable, embodied humanoid AI," Lee said, referring to a Chinese robotics manufacturer that has undercut Western competitors on price while advancing capabilities.
The comments, made to a room filled with Silicon Valley executives, investors, and researchers, represented one of the most detailed public assessments from Lee about the comparative strengths and weaknesses of the world's two AI superpowers — and suggested that the race for artificial intelligence leadership is becoming less a single contest than a series of parallel competitions with different winners.
Why venture capital is flowing in opposite directions in the U.S. and China
At the heart of Lee's analysis lies a fundamental difference in how capital flows in the two countries' innovation ecosystems. American venture capitalists, Lee said, are pouring money into generative AI companies building large language models and enterprise software, while Chinese investors are betting heavily on robotics and hardware.
"The VCs in the US don't fund robotics the way the VCs do in China," Lee said. "Just like the VCs in China don't fund generative AI the way the VCs do in the US."
This investment divergence reflects different economic incentives and market structures. In the United States, where companies have grown accustomed to paying for software subscriptions and where labor costs are high, enterprise AI tools that boost white-collar productivity command premium prices. In China, where software subscription models have historically struggled to gain traction but manufacturing dominates the economy, robotics offers a clearer path to commercialization.
The result, Lee suggested, is that each country is pulling ahead in different domains — and may continue to do so.
"China's got some challenges to overcome in getting a company funded as well as OpenAI or Anthropic," Lee acknowledged, referring to the leading American AI labs. "But I think U.S., on the flip side, will have trouble developing the investment interest and value creation in the robotics" sector.
Why American companies dominate enterprise AI while Chinese firms struggle with subscriptions
Lee was explicit about one area where the United States maintains what appears to be a durable advantage: getting businesses to actually adopt and pay for AI software.
"The enterprise adoption will clearly be led by the United States," Lee said. "The Chinese companies have not yet developed a habit of paying for software on a subscription."
This seemingly mundane difference in business culture — whether companies will pay monthly fees for software — has become a critical factor in the AI race. The explosion of spending on tools like GitHub Copilot, ChatGPT Enterprise, and other AI-powered productivity software has fueled American companies' ability to invest billions in further research and development.
Lee noted that China has historically overcome similar challenges in consumer technology by developing alternative business models. "In the early days of internet software, China was also well behind because people weren't willing to pay for software," he said. "But then advertising models, e-commerce models really propelled China forward."
Still, he suggested, someone will need to "find a new business model that isn't just pay per software per use or per month basis. That's going to not happen in China anytime soon."
The implication: American companies building enterprise AI tools have a window — perhaps a substantial one — where they can generate revenue and reinvest in R&D without facing serious Chinese competition in their core market.
How ByteDance, Alibaba and Tencent will outpace Meta and Google in consumer AI
Where Lee sees China pulling ahead decisively is in consumer-facing AI applications — the kind embedded in social media, e-commerce, and entertainment platforms that billions of people use daily.
"In terms of consumer usage, that's likely to happen," Lee said, referring to China matching or surpassing the United States in AI deployment. "The Chinese giants, like ByteDance and Alibaba and Tencent, will definitely move a lot faster than their equivalent in the United States, companies like Meta, YouTube and so on."
Lee pointed to a cultural advantage: Chinese technology companies have spent the past decade obsessively optimizing for user engagement and product-market fit in brutally competitive markets. "The Chinese giants really work tenaciously, and they have mastered the art of figuring out product market fit," he said. "Now they have to add technology to it. So that is inevitably going to happen."
This assessment aligns with recent industry observations. ByteDance's TikTok became the world's most downloaded app through sophisticated AI-driven content recommendation, and Chinese companies have pioneered AI-powered features in areas like live-streaming commerce and short-form video that Western companies later copied.
Lee also noted that China has already deployed AI more widely in certain domains. "There are a lot of areas where China has also done a great job, such as using computer vision, speech recognition, and translation more widely," he said.
The surprising open-source shift that has Chinese models beating Meta's Llama
Perhaps Lee's most striking data point concerned open-source AI development — an area where China appears to have seized leadership from American companies in a remarkably short time.
"The 10 highest rated open source [models] are from China," Lee said. "These companies have now…
Konten dipersingkat otomatis.
🔗 Sumber: venturebeat.com
🤖 Catatan TOPINDIATOURS
Artikel ini adalah rangkuman otomatis dari beberapa sumber terpercaya. Kami pilih topik yang sedang tren agar kamu selalu update tanpa ketinggalan.
✅ Update berikutnya dalam 30 menit — tema random menanti!